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CALCULATION OF HEAT TRANSFER DURING WATER FLOW 

IN PROFILED TWISTED PIPES 

Yu. M. Brodov, L. G. Gal'perin, 
and E. M. Chizhevskaya 

UDC 536.242 

A Semiempirical model of heat exchange during water flow in profiled twisted 
pipes is formulated on the basis of the modified Prandtl-Taylor analogy. 

It is well known [I-7] that a rigorous analytic investigation of hydrodynamics and heat 
exchange in pipes and channels with artificial roughness is practically impossible, which is 
determined by the extremely complicated flow structure. This situation also pertains fully 
to profiled twisted pipes (PTP), where the interaction of axial, swirled, and separation 
flows is observed. The relations between the intensities of each of these flows, the bound- 
aries of which are practically impossible to predict because of their mutual overlapping, are 
evidently determined by the geometry of the PTP and by the flow regime of the axial stream. 
It must be emphasized that near the pipe wall the flow is three-dimensional: The stream has 
velocity components along the knurling (resulting in friction of the stream against the pipe 
wall) and perpendicular to the projections (resulting in the loss of mechanical energy in the 
developing vortices), as well as a radial velocity component. The relations between the vel- 
ocity components of these flows, and hence the share of friction and local resistances in the 
overall energy dissipation, can be estimated only by modeling. From the data of a number of 
papers [3, 4, 6] it has been established that right at the projections (in a zone of artifi- 
cial roughness) the flow has a cellular character - horseshoe-shaped vortices are formed, the 
dynamics of which depend essentially on the shape and size of the roughness. Moreover, as 
noted in [8], the flow region in the zone above the projections is filled with vortices of 
different scales. Under these conditions, the construction of a calculating model of the 
flow requires a certain schematization. 

On the basis of the concepts presented above, with allowance for the results of investiga- 
tions of the hydrodynamics of water flow in glass PTP, a semiempirical model of the process 
of heat exchange during the flow of a one-phase heat-transfer agent in a PTP is based on the 
modified Prandtl-Taylor analogy. The main idea of this analogy consists in the summing of 
the thermal resistances of the different regions through which the heat flow occurs [8]. For 
a two-layer Prandtl-Taylor model the total thermal resistance consists of the sum of the 
thermal resistances of the regions of turbulent (Rt) and molecular (Rm) transfer: 

R = R~+ Rm. (i) 

The following equation was obtained in [8] for moderate Prandtl numbers, using the general- 
ized Reynolds analogy for the thermal resistance in a fully turbulent region: 
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Fig. i. Diagram of wall flow of a heat- 
transfer agent lying at the foundation 
of the model: ABC, DEF) vortex zone I; 
CD) zone of relatively smooth twisted 
flow II. 

8;~PrSt = Pr, (1 VS)V t + "~wCPv----~ Rr~. (2) 

We assume that the thickness of the viscous sublayer on the "smooth" section between projec- 
tions of the knurling is considerably less than the characteristic size h of a projection. 
Then the thermal resistance Rm of the wall zone is determined entirely by the hydrodynamics 
of flow in the space between projections, i.e., the regime of "developed roughness" occurs. 
In this case, the transitional zone between the vortical wall region and the external, fully 
developed turbulent flow is absent, i.e., (Vs/Vf) << i [8]. Then Eq. (2) takes the form 

..~ pr. = Pr~ + Tw C ~  R~. (3) 
8St V 1 

The problem consists in giving Rm the value characterizing the intensity of heat transfer 
in the wall zone of a PTP. 

The scheme of wall flow of a heat-transfer agent in a PTP is analyzed, by analogy with 
[5], in the following form (Fig. i). The space between two adjacent projections (turbulizers), 
spaced over a distance S, is occupied by a vortex zone I (ABC and DEF) with a total length of 
9h along the wall and by a zone of relatively smooth twisted flow II (CD). As was shown in 
[5], the quasisteady vortex zone is practically insensitive to the orientation of the projec- 
tion relative to the stream of heat-transfer agent in a wide range of variation of the onflow 
angles. It is assumed that S > 9h, while the thickness (width) of the projection (turbulizer) 
is small and it can be neglected. The heat flux from the wall to the stream of heat-transfer 
agent in the PTP is determined by the sum of the heat fluxes in zones I and II, 

q = qI + qII, (4) 

where ql is the heat flux through the vortex region; qll is the heat flux through the zone of 
"smooth" flow. 

The area of contact of the vortex region with the pipe surface, within the limits of the 
knurling pitch along a filament, is 

F~o ~ "~" 9h ]/(zS) ~ -1-(ndm)~, ( 5 ) 

while the region of "smooth" flow has a contact area with the pipe surface 

~m = F - -  Fro ~ = ndN (zS) - -  9h V (zS) 2 + (~din) ~. (6) 

The e x p r e s s i o n  f o r  t he  d e n s i t y  of  the  h e a t  f l u x  from t h e  wa l l  to  t h e  h e a t - t r a n s f e r  agen t  
in a PTP takes the form 

qF = q, Fro ~. + qIiFsm, (7) 

where qI and q I I  a r e  t h e  d e n s i t i e s  of  h e a t  f l u x e s  th rough  t h e  v o r t e x  and "smooth" zones ,  r e -  
s p e c t i v e l y .  

We analyze the heat transfer in the vortex zone I by analogy with [8]. Here we assume 
that the velocity of the circulation flow near the wall has the order of the dynamic velocity 
V* = (Tw/p) ~ while heat is transferred to the circulation flow, so that up to the time of 
separation of a vortex it is transferred to the external stream only by diffusion (a molecu- 
lar mechanism) at the solid boundary. The distance over which heat diffuses in the circula- 
time time T = (h/V*) is detrmined by the expression 
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v ~  l /~-z  C v h .  ' �9 (8) 

Then the equation for the heat flux in the vortex zone I per unit area per unit time takes 
the form 

~t, := PCv(T w --%) --]// -~gg = pCvAT 
"T /-[r 

(9) 

We represent the heat flux in the region of "smooth" flow in the form [8] 

== - -  ( T w - - T ~ ) = - -  (10) 
Vh Yt~ 

Introducing the frictional stress Zw = D(V*/ym) at the pipe wall, and taking Ym m Yh [8], we 
obtain 

qIt= %xwAT (11) 
v~V* 

The temperature Ts at the boundary between this region and the turbulent core of the stream is 
assumed to be the same as the analogous temperature for the vortex zone. 

Using the functions (9) and (ii), we find the density of the heat flux from the wall to 
the heat-transfer agent: 

(12) 

" h r~dln ~ zS / ~d.in V t @ \ zS ] " 

Thus, the total thermal resistance of the wall zone of a PTP, treated for the given model 
as a set of thermal resistances of the vortex region and the region of "smooth" flow connected 
in parallel, is 

[ -  . .............. ) ...... ( 
-/~ L h ~% 1//1+ + - b T  1 ~% I /  1 + \  zS 

Substituting (13) into Eq. (3), we obtain the function determining the heat transfer in the 
flow of a one-phase heat-transfer agent in a PTP: 

p ( V * ) ~  . . . 

NUpr = RePr )~pr r~ + 9h V [ ~ \ 2  /a[Z* -~ 
8 L-~tn 1-t'~ zS ) V - - ~  § (14) 

( V * ) 2 / V t  

. . . . . . . . .  - ~ d ~  v* t- I 

+I1 9/* V I + ( _ ~ )  )~rrJ 
z~d In 

It is interesting to analyze this function in dimensionless form in comparison with the 
data for a smooth pipe. Since V* = (Xpr/8)~ and introducing the Reynolds number through 
the average flow velocity, Re = (Vfdin)/V, we finally obtain 

NU;pr__ RePrLor {Pr~+ 
Nu sm 8NU~sm 

+ Re Pr ~,W/8 -+... 
] " 

9-] / /~ in  1+ \ zS ) / R e P r  r 8 
5t 

(15) 
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Fig. 2. Comparison of data on heat transfer 
during water flow in a PTP: i) h = 0.69, 
S = 6.7, din = 17.0 man; 2) 0.31, 6.5, 17.0; 
3) 0.70, 14.0, 24.0; 4) 0.63, 20.0, 33.0; 5) 
0.53, 20.0, 17.0; points) experimental data; 
solid lines) calculation from the function 
( 1 5 ) .  

. . . ~ RePrs  / 8 ] -  

< J [ I I (is) 
d- 1 9h 1 ~- Re 

L ad:i~ t, zS ] J 

where 

0.023 R e ~  ~ = t s ~ l  ~ 13 + . 9 4 \  NUsm 

( s e e  [ 9 ] ) .  T h i s  f u n c t i o n  i s  v a l i d  f o r  S > 9 h .  

A c c o r d i n g  t o  [ 8 ] ,  t h e  t u r b u l e n t  P r a n d t l  n u m b e r  P r t  i s  a f u n c t i o n  o f  t h e  R e y n o l d s  a n d  
Prandtl numbers. Since for water flow in a PTP one observes twisting of the stream, also in- 
fluencing its core, the quantity Prt should also depend on the geometry of profiling of the 
pipe. Therefore, 

P h  = P r t ( R e ,  Pr,  h, S, z, din). (16) 

The concrete form of this function was determined from a comparison of Eq. (15) with the 
authors' experimental data on heat transfer during water flow in a PTP, 

Pr  t = A RemPr " , (17) 

w h e r e  A = 0 . 2 0 ;  m = 0 . 1 6 3  + 4 . 2 ( h / S * ) ;  S* = g ( z S )  = + ( ~ d i n ) = ;  n = 0 . 5 2 .  T h e  e x p r e s s i o n  o b -  
t a i n e d  is valid to within 10% in the following ranges of the parameters: 

h =  ( 0 , 0 1 0 - - 0 , 0 6 5 ) d m : ;  S = ( 1 0 - - 4 0 ) h ;  z = 3; 

S* = ( 5 6 - -  107 ) r am;Re  = ( 1 0 - -  120) �9 10 a. 

A comparison of experimental data on a number of PTP with the results of calculations 
through the function (15) shows their satisfactory agreement (Fig. 2). We consider that the 
proposed semiempirical model of the process allows us to calculate heat transfer during water 
flow in profiled twisted pipes. 

NOTATION 

R, thermal resistance; Xpr, effective coefficient of resistance; Prt, turbulent Prandtl 
number; Vs, stream velocity at the outer boundary of the region (zone) under consideration; 
Vf, average stream velocity; ~w, wall shear stress; Tw, temperature of pipe wall; Ts, tem- 
perature of stream of heat-transfer agent at the outer boundary between the region and the 
turbulent core of the stream; q, specific heat flux; a, coefficient of thermal diffusivity; 
�9 , time; p, density of heat-transfer agent; Cp, specific heat of heat-transfer agent at con- 
stant pressure; X, coefficient of thermal conductivity; yh, thickness of the thermal bound- 
ary layer in the zone under consideration; Ym, thickness of the viscous sublayer; p, coeffi- 
cient of dynamic viscosity; t = zS, pitch of knurling (profiling) of the pipe along the fil- 
ament; S, distance between adjacent projections (depressions); z, number of starts of profi!- 
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ing; h, height of a projection (depth of a depression); din, inside diameter of pipe along 
a smooth section; Nu, Re, Pr, St, Nusselt, Reynolds, Prandtl, and Stanton numbers, respec- 
tively. Indices: t, turbulent number (region of turbulent transfer); m, region of molecular 
transfer; w, wall; s, outer boundary of a region; f, average value; vort, vortex region; sm, 
region of "smooth" flow (smooth pipe); in, inside; pr, profiled pipe. 

LITERATURE CITED 

i. B.S. Petukhov, "Problems and prospects in the development of the theory of heat exchange," 
Teploenergetika, No. 3, 2-6 (1982). 

2. A.I. Leont'ev (ed.), Theory of Heat and Mass Exchange [in Russian], Vysshaya Shkola, 
Moscow (1979). 

3. V.K. Migai, Increasing the Efficiency of Modern Heat Exchangers [in Russian], Energiya, 
Leningrad (1980). 

4. ~. K. Kalinin, G. A. Dreitser, and S. A. Yarkho, Intensification of Heat Exchange in 
Channels [in Russian], Mashinostroenie, Moscow (1981). 

5. M.D. Millionshchikov, Turbulent Flows in a Boundary Layer and in Pipes [in Russian], 
Nauka, Moscow (1969). 

6. V.K. Shchukin, Heat Exchange andHydrodynamics of Internal Streams in Mass Force Fields 
[in Russian], Mashinostroenie, Moscow (1980). 

7. A.A. Zhukauskas, Convective Transfer in Heat Exchangers [in Russian], Nauka, Moscow (1982). 
8. A.J. Reynolds, Turbulent Flows in Engineering, Wiley, New York (1974). 
9. Yu. No Bogolyubov, Yu. M. Brodov, V. T. Bug!aev, et al., "Generalization of data on 

hydraulic resistance in twisted profiled pipes," Izv. Vyssh. Uchebn. Zaved., Energ., NO. 
4, 71-73 (1980) .  

ANALYSIS OF LONGITUDINAL VELOCITY FLUCTUATIONS ON A PLATE 

A. B. Garyaev, O. V. Dobrocheev, and V. P. Motulevich UDC 532.517.4 

It is proposed to use the equation of the second moments with a mixing path 
length determined on the basis of experimental data for the longitudinal veloc- 
ity fluctuations in a boundary layer. 

In describing a number of hydrodynamics and heat-transfer problems, not only the aver- 
aged but also the fluctuation characteristics of the flow must be known. As an illustration, 
turbulent transfer processes in apparatus of chemical technology, high-temperature energet- 
ics, space and laser engineering can be cited. The heat flux in such apparatus depends not 
only on the turbulent transfer coefficients and the mean flow parameters, but also on the fluc- 
tuation structure of the flow, since it exerts substantial influence on the rate of physico- 
chemical transformation and, consequently, on the heat and mass transfer. 

Many paper [1-4], say, are devoted to the experimental investigation of fluctuating turb- 
ulent flow structure. Mainly problems of closing the turbulent transfer equations have been 
worked out theoretically [5-9]. The description and analysis of singularities in the veloc- 
ity and temperature fluctuation distributions are limited. 

An attempt is made in this paper to compute the longitudinal velocity fluctuation pro- 
file in the boundary layer on a plate around which a gradient-free gas flows. The problem of 
determining the average velocity has been studied sufficiently well for this case. The veloc- 
ity profile is determined from the equations 

a~u ap-6- ~_.,~ o; ( i )  Ox ~ 09 
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